Rationale and preclinical efficacy of a novel anti-EMP2 antibody for the treatment of invasive breast cancer.
نویسندگان
چکیده
Despite significant advances in biology and medicine, the incidence and mortality due to breast cancer worldwide is still unacceptably high. Thus, there is an urgent need to discover new molecular targets. In this article, we show evidence for a novel target in human breast cancer, the tetraspan protein epithelial membrane protein-2 (EMP2). Using tissue tumor arrays, protein expression of EMP2 was measured and found to be minimal in normal mammary tissue, but it was upregulated in 63% of invasive breast cancer tumors and in 73% of triple-negative tumors tested. To test the hypothesis that EMP2 may be a suitable target for therapy, we constructed a fully human immunoglobulin G1 (IgG1) antibody specific for a conserved domain of human and murine EMP2. Treatment of breast cancer cells with the anti-EMP2 IgG1 significantly inhibited EMP2-mediated signaling, blocked FAK/Src signaling, inhibited invasion, and promoted apoptosis in vitro. In both human xenograft and syngeneic metastatic tumor monotherapy models, anti-EMP2 IgG1 retarded tumor growth without detectable systemic toxicity. This antitumor effect was, in part, attributable to a potent antibody-dependent cell-mediated cytotoxicity response as well as direct cytotoxicity induced by the monoclonal antibody. Together, these results identify EMP2 as a novel therapeutic target for invasive breast cancer.
منابع مشابه
Immunotherapy for Breast Cancer Treatment
Breast cancer, as a heterogeneous disease, includes a wide range of pathological and clinical behaviors. Current treatment protocols, including radiotherapy, chemotherapy, and hormone replacement therapy, are mainly associated with poor response and high rate of recurrence. Therefore, more efforts are needed to develop alternative therapies for this type of cancer. Immunotherapy, as a novel str...
متن کاملDiabodies targeting epithelial membrane protein 2 reduce tumorigenicity of human endometrial cancer cell lines.
PURPOSE Endometrial cancer is the most common gynecologic malignancy. One promising biomarker is epithelial membrane protein 2 (EMP2), and its expression is an independent prognostic indicator for tumors with poor clinical outcome expression. The present study assesses the suitability of EMP2 as a therapeutic target. EXPERIMENTAL DESIGN Human monovalent anti-EMP2 antibody fragments were isola...
متن کاملEpithelial membrane protein-2 is a novel therapeutic target in ovarian cancer.
PURPOSE The tetraspan protein epithelial membrane protein-2 (EMP2) has been shown to regulate the surface display and signaling from select integrin pairs, and it was recently identified as a prognostic biomarker in human endometrial cancer. In this study, we assessed the role of EMP2 in human ovarian cancer. EXPERIMENTAL DESIGN We examined the expression of EMP2 within a population of women ...
متن کاملAnti-cancer and anti-immunomodulatory properties of novel Arteether in Folic acid-Chitosan-Fe3O4 composite nanoparticle for treatment of breast cancer
Goal: The potent anti-cancer activity of Arteether (ARE) has been the focus of many studies. However, the hydrophobic property of this drug limits its application. To increase the bioavailability of ARE, we formulated a nanosystem (NS) of folic acid (FA), chitosan (CS) and Fe3O4 for delivery of ARE against breast cancer. Material and Methods: The CS coated Fe3O4 was synthesized by co-precipitat...
متن کاملMicro-pixe analysis in invasive ductal carcinoma tissues after treatment of astaxanthin
Background: Trace elements play an important role in a number of biological processes. Astaxanthin (ASX), a carotoid pigment found in certain marine plant and animals, has shown anti cancer and anti free radical properties. This work intended to understand the effect of Astaxanthin in breast cancer (invasive ductal carcinoma, IDC) by using micro-pixe method. For this aim the concentratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular cancer therapeutics
دوره 13 4 شماره
صفحات -
تاریخ انتشار 2014